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Finite-size effects of correlation lengths in planar uniaxial ferromagnets
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The finite-size structure of two-point correlation functions is studied using the bubble model applied
to the two-dimensional Ising model at subcritical temperatures in a small bulk field H wrapped around a
cylinder with a circumference of M lattice sites. Particular emphasis is placed on a crossover occurring
in the mass gap at |H|=H  corresponding to an “avoided level crossing” in the second and third eigen-
values of the transfer matrix. It is argued that this crossover occurs because the class of bubble deter-
mining the behavior of correlation functions changes from a single connected closed loop for |H|> H
to two disconnected closed loops encircling the cylinder for 0 < |H| < H . The differing structures of the
two-point correlation functions when 0< |H| < H as compared to |H|> H , are also determined using
the bubble model. It is found that at a subcritical temperature 7, the correlation length £ for
0<|H|<H is given by 1/6=2mHM /ky T, where m is the magnetization, and for |H| > H it is given
by 1/€=27+a|H|*??, where 7 is the interfacial tension in units of k3T and a >0 is some temperature-
dependent coefficient. Previous analysis of the transfer matrix by Privman and Schulman [J. Phys. A 15,
L231 (1982) and J. Stat. Phys. 29, 205 (1982)] suggested that H, «< M ~!, which was then further refined
by Privman and Fisher [J. Stat. Phys. 33, 385 (1983)], who claimed that H, =kzT7/mM. This is
confirmed here by the bubble model to leading order for large M but with additive algebraic
corrections—the first two going like M ~3/3 and M ~7/3. At H =0, the class of bubble determining the
behavior of the pair-energy-density correlation function is found to be that of a single closed connected
loop similar to the case when |H| > H but with greater symmetry due to having H =0. It is shown that
the effect of this greater symmetry can be understood from topological considerations of the allowed
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loop configurations.
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I. INTRODUCTION

In this paper, we shall concern ourselves with the
behavior of two-point correlation functions (pair spin and
pair energy density) in planar Ising-like models wrapped
on cylinders of infinite length but finite circumference M
(in units of lattice spacing). Specifically, we shall keep the
temperature T below that of the critical point 7, and
have a bulk field H that will usually be kept nonzero. In
the limit of infinite M and for small H, this is, of course,
in the vicinity of the first-order phase boundary—for
finite M, models of this kind have been studied extensive-
ly with the view of understanding (a) finite-size scaling
and rounding of first-order phase transitions [1] and (b)
essential singularities on the phase boundary [2-5].

Particular attention has been paid to the structure of
the spectrum of the subcritical planar-Ising transfer ma-
trix as a function of H [1-5]. Consider the so-called
“free-energy levels” defined by

fo(H,T;M)=—(BM) " '"InA,,(H,T;M) (1.1)

for n=0,1,2,..., where B=1/kgT and A, are the ei-
genvalues of the transfer matrix with the largest eigenval-
ue Ag and Ag>A;>A, - +. Thus, in the limit M — oo,
the free-energy density is fo(H,T; ). If O(X,Y) is a
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lattice operator (e.g., a spin or bond energy) at site (X,Y)
on the Ising lattice (with the X direction running parallel
to the cylinder axis) then the truncated pair-correlation
function decays asymptotically like

(0(0,0)0(X,0))T={©(0,0)0(X,0))
—{(0(0,0)){0(x,0))

~exp[—X /E(H,T;M)] (1.2)

as X — oo (ignoring prefactors for the time being). Here
X (and Y) is measured in units of lattice spacing. The
correlation length is given by

1/8(H, T;M)=BM(f1—fo) (1.3)

provided the relevant matrix element is nonzero [6].

The first three free-energy levels are plotted schemati-
cally against H in Fig. 1. Here we follow Privman and
Fisher [1], who brought together information gained
from a variety of studies—rigorous results for H =0 and
T =0 [7] and rigorous results for T=0 and H+0 [5]—
together with a more general analysis for 7> 0 and H+#0
such as, in particular, that of Privman and Schulman
[4,5]. Clearly, by spin-inversion symmetry, Fig. 1 is
symmetrical about H=0. We now describe some of its
salient features.

5261 ©1995 The American Physical Society



5262
Jn
f
N
/ N\
/ —Hy Hy N H

FIG. 1. Schematic plots of the first three “free-energy lev-
els,” i.e., f,=—(BM) 'InA, for n=0,1,2, as a function of the
bulk field H, for the two-dimensional Ising model on a cylinder
with M lattice sites along its circumference. The circles denote
the ‘““avoided-level-crossing” regions, which are exponentially
small in M. Not shown here are the “multiparticle” bands lying
above f, at H=0, which extend into H#O0 for |H|<H «, and
the “single-particle” bands lying between f; and f, for
|H|>Hx.

(i) At H=0, the first two levels f; and f, are asymp-
totically degenerate [8] such that as M —

—™
fi—=fo~e™ ™,

where we ignore prefactors and 7 is the interfacial tension
divided by kzT. The region of “avoided level crossing,”
where f; and f, are separated as in (1.4), is believed [2]
to continue for nonzero H up to |H|~exp(—7M).

(i) Asymptotic degeneracy is also present at H =H y
for £, and f, (see Fig. 1). Here, following Newman and
Schulman [2], it is assumed that f,—f;~exp(—cM),
where now ¢ may be H dependent and that the avoided-
level-crossing region, centered on H ., is also of order
exp(—cM), in analogy with (i).

(iii) For small |H|<H, but outside the avoided-
level-crossing region, and M large, we have that
dfo/0H =~ —m *sgn(H), where m * >0 is the spontaneous
magnetization [9] and, from level-crossing ideas [2],
of,/90H =~ +m*sgn(H).

(iv) Level-crossing ideas analogous to those in (iii) can
be employed near H . Thus, outside the region of avoid-
ed level crossing, the slope of f, (f;) for H just above
H ., is equal to that of f (f,) for H just below H .

(v) For H=0 and for large M,

fo=f1=1/BME(T),

(1.4)

(1.5)

where £_(T) is the correlation length of a single bulk
phase [7].

(vi) For sufficiently small H > H , and large M, the
correlation length §(H,T; M), given by (1.3), can be tak-
en to be approximately & (T) as given by (1.5) [1].

(vii) Above f, for H=0, there exists a band of “two-
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particle” states. Successive levels making up this band
have a separation of the order of 1/M 3 for large M, or, in
other words, successive values of InA,, in this band differ
by an amount going like 1/M? These form “single-
particle bound pairs” for H70 [10] [see (viii) below].
This band is not depicted in Fig. 1.

(viii) Between f, and f, for H > H , there exists a
band of single-particle states [10] (again, not shown in
Fig. 1). In the limit M — o, levels making up this band
have a separation going like H2/* for small H, this being
related to the McCoy-Wu “mass” spectrum [11]. More
will be said about this later.

From the above properties, Privman and Fisher [1]
were able to predict heuristically the value of H
through the following argument. If one assumes that f,
f1, and f, are piecewise linear functions of H with slopes
given by £m* in accordance with properties (iii)—(vi)
(reasonable since the regions of avoided level crossing are
exponentially small in M for large M), then

[,(H=0,T)—m*H=f(H=0,T)+m*Hy (1.6)
from which, using (1.5), it follows immediately that H
is given by
2m*Hy 1
kgT ME (T)

(1.7)

This result is known to be true in the limit 7—0 [4,5]
and is believed to hold for general T < T,. It was impor-
tant for Privman and Fisher [1] to assess the size of H
since one of the main themes of their paper was to inves-
tigate finite-size rounding of the first-order phase transi-
tion by an approximation to the partition function, which
only takes into account the first two eigenvalues A, and
A, of the transfer matrix. This procedure can only be
justified for H <<H ,, where f, and f; are much closer
to one another than either are to f,.

Note also that, under the same assumptions leading to
(1.7), for H<Hy we have that f;—f,=2m*H and
hence, by (1.3), the correlation length is given by
1/6H,T;M)=2m*HBM whereas 1/&H,T; M)
=1/€,(T) for H>H . Thus H, marks a crossover be-
tween two regimes with very different behavior in the
correlation function. The main purpose of this paper is
to investigate this crossover from a different point of
view, one that does not require knowledge of the
transfer-matrix spectrum, but which enables us to predict
in greater detail the full structure of the correlation func-
tion for these two regimes.

Here we apply the “bubble model” for correlation
functions [12,13], which is developed in detail in Sec. II.
Two types of bubble, shown in Fig. 2, incorporating the
important fluctuations, contribute to the two-point
function—one type will dominate for 0 <H <H , [Fig.
2(i)] while the other will control behavior for H > H
[Fig. 2(ii)]. The bubbles delineate regions of reversed
magnetization so that at the crossover point, given by
equality of free-energy fluctuations, we have
2Bm*H MX=X /€ (T), which is (1.7). In Sec. III the
bubble model is evaluated for 0 < H < H ,, predicting the
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FIG. 2. Two types of bubble I', separating domains of oppo-
site magnetization +m, giving leading-order contributions to
the two-point function u,(x). (i) shows a bubble of type A,
where T splits into two disconnected closed loops with each
winding around the cylinder; (ii) shows a bubble of type B,
where I' stays as a single connected closed loop. In the
functional-integral evaluation of u,(x), which treats I" as parti-
cle world lines, the timelike direction is indicated by the ¢
arrows—one going around the cylinder in (i) and the other
pointing along the cylinder axis in (ii).

form of the correlation function in this regime. Some de-
tails of the asymptotic analysis used here are left to the
Appendix. In Sec. IV we evaluate the model for the oth-
er type of bubble, thus determining the behavior of the
two-point function for H > H, . The results of Secs. III
and IV are brought together in Sec. V, giving rise to a
more precise prediction for H, involving additive
corrections to (1.7) that are algebraic in M. In Sec. VI we
apply the bubble model to the pair-energy-density corre-
lation function directly at H =0 with emphasis on
differences occurring due to the absence of broken sym-
metry for this case as compared to when H >0. We
finish with a conclusion in Sec. VII.

II. BUBBLE MODEL

The bubble model was introduced to describe subcriti-
cal (T < T,) correlation functions [12,13] and is known to
give reliable information on the asymptotic behavior of
two-point correlation functions for all T < T, and small
|H]|, i.e., close to the phase boundary [12—16]. The basic
idea is to suppose that after coarse graining to length
scales of the order of the bulk correlation length
£,, the important configurations contributing to
(0(0,000(X,Y))T will be self-avoiding simple-closed
loops I'" or bubbles, passing through the two points (0,0)
and (X,Y) being correlated. Loops that pass through
one point but not the other or I" consisting of two discon-
nected loops, each of which is rooted at either (0,0) or
(X, Y), are not counted since these will contribute to the
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disconnected part of {(@(0,0)@(X,Y)) and are thus re-
moved by truncation of the one-point functions in the
definition of {@(0,0)(X,Y))T in (1.2). The connected
simple-closed nature of I" supposes that we are correlat-
ing on a simply connected space such as an infinite plane
(the focus of most previous bubble-model work [12-16])
or finite-width strips with boundary fields [17]. This sup-
position will no longer hold in the case of the cylinder
considered here, as will be explained later. The loop T’
will carry an interfacial tension 7 and enclose domains of
opposite magnetization (equal magnitude, opposite sign)
with the magnetization outside the loop being determined
by either a condition on the boundary of the lattice or, in
the case of interest to this paper, the presence of a bulk
symmetry-breaking magnetic field. The two-point func-
tion can then be written as a sum over the bubble
configurations I

(0(0,000(X,Y))T=U, 3 e PED | 2.1
r

where the “effective’ energy of the loop I is given by

E)=B"171(T)+2mHA() , (2.2)

where /(I") is the length of " and A(T) is the area en-
closed by I'. Since H is assumed to be small, the magneti-
zation m is usually taken to be at its spontaneous value
m*. The prefactor U, is m? for the pair-spin-correlation
function and 4r° for the pair-energy-density function
[16]. At this stage it is worth stressing that the bubble
model could describe more general situations where the
order parameter has O(1) symmetry, not just the Ising
model, although in what follows we shall restrict our-
selves to this case.

In all that follows, we shall redefine all distances to be
in units of 1/7 so that the correlation coordinates are
x=7X, y=7Y and the cylinder circumference is now
L =7M. We shall also use the scaled field variable

h= 2mH
2kyT ’

(2.3)

which will be kept positive [18]. Hence we now denote
{(0(0,0)0(X,0))T by u,(x) and BE(T") becomes simply
BE(I')=I(T")+h A(T), now that all lengths are measured
in units of 1 /7, so that

u,(x)=Uy 3 exp{ —[I(T)+hA(T)]} .
r

(2.4)

Two types of bubble contributing to u,(x) for finite L
are illustrated in Fig. 2. What we shall call type A is
shown in Fig. 2(i), where the bubble I" breaks up into two
disconnected loops, with each one winding round the
cylinder and pinned to one of the correlation points. The
two loops will be coupled by the action of the field 4 since
for this case A(T") is the area of the region between the
two loops making up I'. The other class of bubble, type
B, stays as a single connected simple-closed loop and is
shown in Fig. 2(ii). Disconnected bubbles that do not
wrap around the cylinder do not occur in (2.4) because
they are already taken into account in the one-point func-
tion parts.
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As x — o and h sufficiently small but nonzero, type A
bubbles dominate since they have a lower E(I') than
those of type B. This situation changes as /4 increases un-
til, eventually, type B bubbles dominate. If I'; is the
minimal-energy bubble (i.e., Wulff shape [19]), then for
type A, BE(Ty)=~2L+hLx, whereas for type 3B,
BE(T;)=2x. Hence, as x —

e M* for 0<h <hy (type A)

Uy (x)~
g e ¥ for h>hy (type B), 2.5)
where the “crossover” field 4  is given by
hy=2/L , (2.6)

in exact agreement with (1.7) but now written in terms of
scaled variables [note that when comparing with (1.7) one
needs to use 7§, =1]. Thus we arrive at a simple physi-
cal mechanism behind the crossover behavior seen in the
transfer-matrix spectrum.

For the type A case, one might have worried about
domain configurations consisting of further loops wind-
ing round the cylinder in addition to the two passing
through the correlation points, i.e., I' as shown in Fig.
2(i). However, these can be discounted by the following
argument. Since k>0, the magnetization in the domain
outside T is positive. Therefore, only an even number of
additional loops can form within I". If two were to form,
one would be pulled by the action of the field 4 towards
the loop passing through (0,0) and the other would be
similarly pulled to the loop passing through (x,0). This
will behave as though 4 =0 (see below) but with L re-
placed by 2L (coming from two loops passing through
each correlation point). After truncation of the part that
remains in u,(x) after the limit x — o0 is taken, this
configuration gives a contribution to u,(x) going like
exp(—x2/2L) and thus highly subdominant to the
simpler two-loop configuration I'" (type A ) shown in Fig.
2(i).

The average distance separating the upper and lower
sides of I for the type B bubble [see Fig. 2(ii)] is propor-
tional to # ~!/3 for large L and x. This is because the
boundary of the type B bubble separates phases that do
not coexist since H70. If we treat the phase inside the
bubble as if it sits on a substrate, we have a wetting prob-
lem, the solution of which is already known [20,21].
Then h{ A(T')) < h?/3x, leading to a form for u,(x) for
h > h consistent with McCoy and Wu [11]. This will
give an algebraic correction of O(L ~°”%) to the right-
hand side of (2.6). A fuller discussion of this will be left
to Sec. V.

Finally, we stress that our analysis will usually be
confined to 2 >0. We will certainly have nothing to say
about asymptotic degeneracy at =0 and h . However,
at this stage, it should be noted that although type A
bubbles dominate over type B for 0<h <h ., they do not
do so at A=0. It will be shown in the Sec. VI that
u,(x)~exp(—x2/L) for type A bubbles at # =0 (after
truncating away additive x-independent terms), which is
highly subdominant to u,(x)~exp(—2x) as determined
from type B bubbles at #=0. Indeed, a recent study of
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pair-energy-density correlation functions on cylinders at
h =0 was conducted where an exact Ising analysis was
shown to compare quite well with the bubble model using
type B bubbles [22]. Pair-energy-density correlation
functions are not, of course, affected by asymptotic de-
generacy at h =0, unlike pair-spin-correlation functions.

In the following two sections, functional integration
techniques are used to evaluate the bubble model for
u,(x) more quantitatively, with type A bubbles in Sec.
III and type B bubbles left to Sec. IV. We shall use the
notation u,(x|A) and u,(x|B) to denote the contribu-
tion to u,(x) coming from bubbles of type A and type B,
respectively.

III. EVALUATION OF TYPE .A BUBBLES

We evaluate Eq. (2.4) by limiting to a functional in-
tegral that can be regarded as a quantum-mechanical
propagator in Euclidean time [14,15,22,23]. For type A
bubbles, it is convenient to treat the direction perpendic-
ular to the cylinder axis, that is, the y direction, as the
timelike (¢) direction—this is indicated by the ¢ arrow in
Fig. 2(i). The two loops forming I'" are allowed to fluctu-
ate in the x direction with a solid-on-solid (SOS) con-
straint (no overhangs) applied to the timelike y direction.
One then treats the loops as world lines for two particles
x,(t) and x,(t), shown schematically in Fig. 3, with ini-
tial positions at x,(0)=0 and x,(0)=x and final positions
at t=L satisfying x;(L)=x;(0) for j=1,2, since, of
course, each loop closes on itself. The length of the
world line for particle j =1,2 is

0= [V 145}, 3.1)

where throughout this paper we use X;=dx;/dt. We

shall adopt the nonrelativistic  approximation
q 3
%0
B0)
gk
X 4 X

x®

t=0 t=L

FIG. 3. Two world lines x,(¢) and x,(¢) for a type A bubble,
obtained from rolling the cylinder out at the seam joining y =0
with y =L so that the world lines start at t=0 and end at t =L.
Their characteristic length scales parallel and perpendicular to
the y axis (¢ direction) are denoted schematically by §;(h) and
&,(h), respectively.
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1/1+xj2z1+xj2/2 so that Eq. (2.4) can be expressed in
terms of a quantum-mechanical propagator, for two non-
crossing nonrelativistic particles of unit mass interacting
through a linear potential, as

x(L)=0,x,(L)=x

uy(x | A)=U, [

x,(0)=0,x,(0)=x

[dx,dx,]
Xexp(—S,[x,x,]),
(3.2)
where the Euclidean action is
Sz[xl,x2]=2L+foLdt{%x%+%x%+h(x2—xl)} .
(3.3)

The measure in (3.2) is over all noncrossing paths with
x,(2) = x,(t) satisfying the indicated initial and final con-
ditions. It is known that by rescaling distances in units of
1/7, no additional scale factors are needed in the measure
[23].

One can easily evaluate (3.2) by going over to “center
of mass” x , (¢) and “relative” x _(¢) coordinates defined
through

1
xi(t)=‘/—_2(x2ixl)(t) (3.4)
so that (3.2) becomes
uy(x|A)=Uqje 2!K (LK _(x;L), (3.5)

where K (L) is the propagator for the center-of-mass
motion

L,.
K+(L)=fx+(o)=x+m[dx+]exp [—fo %xidt]

with the measure over world lines having
x . (t)E(— o0, ) while the propagator for the relative
motion is

(3.6)

x_(L)=x/V2 —S[x_]
1r<_(x,L)—fx_(0)=x/\/E [dx _]e 3.7)
with its Euclidean action given by
S[x_]=f0Ldt(%x2_ +V2hx_) (3.8)

and the measure in (3.7) is over all world lines with
x_(t)=0forall t€[0,L].

The propagator K (L) is merely that of a free nonrela-
tivistic particle on an infinite line where it is well known
that

1
V2L
On the other hand, K _ (x;L) is the propagator for a par-
ticle moving on a half line in a linear potential. We shall

evaluate it in the following two subsections, each describ-
ing differing viewpoints.

K. (L)= (3.9)

A. Spectral decomposition of K _ (x;L)

The propagator defined by (3.7) can be expressed in the
usual spectral form
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K_(x;D=3 lp,(x /V2)|%e (3.10)

where the eigenfunctions @, (x) for x =0 are solutions of
the Schrodinger equation

2 _
-—l——d—+\/2hx

2 o (3.11)

@, (x)=E,p,(x)

with eigenvalues E,. The eigenfunctions satisfy the
boundary conditions ¢,(0)=0 (leading to quantization)
and lim,_, ,@,(x)=0 and the normalization condition
J &l@a(x)|?dx =1. The solutions to Eq. (3.11) can be ex-
pressed in terms of the Airy function Ai(x) with
E,=—a,h?, where a, is the nth zero of the Airy func-
tion Ai(a,)=0 for n=1,2,... and 0>a;>a,> -
Hence, from (3.10), the propagator becomes

2/3
h®’°La,

_ .= AfhYx+a,
K_(X;L)Z\/Zhl/a 2 1 x. a )i
n=1 [Ai'(a,)]

where Ai'(x )=d Ai(x)/dx.

Note, in (3.12), how x is scaled by 4'/3 and the cir-
cumference L is scaled by #2/3. This scaling is a conse-
quence of the presence of two length scales due to interfa-
cial fluctuations. It is known from the theory of complete
wetting in planar models [20,21] that for an interface (in
1+ 1 dimensions) in a bulk field 4 above the wetting tem-
perature, the interfacial correlation length parallel to the
interface §(h) grows like §(h)~h =273 and there is a
characteristic length perpendicular to the interface & (4)
growing like &,(h)~h~'7 so that £,~£}. These length
scales are shown schematically in Fig. 3 and the scaling
in (3.12) is now completely natural.

Since we wish to investigate u,(x) for large x, verifying
(2.5) for 0<h <h , one needs to understand the asymp-
totic behavior of Eq. (3.12) as #!/3x — . This we do by
limiting the sum in (3.12) to a Riemann integral, the
asymptotics of which is analyzed using Laplace’s method,
which, it turns out, requires that A 2731 also be large. The
details of this calculation are given in the Appendix—
here we just present the result, which says that

exp[—(th—leth3)]
vV 2rL
as h13x — o0, h?/3L — o such that x >hL%/4. This, of

course, gives rise to the expected x dependence in
u,(x)~exp(—hLx) for large x when O<h <h .

, (3.12)

K_(x;L)=

(3.13)

B. Semiclassical approximation
and the Wulff construction

In addition to the required x dependence in (3.13), one
also has an additional term in the exponential together
with a prefactor. These terms have a natural interpreta-
tion, understood from the familiar semiclassical approxi-
mation to the path integral K _(x;L), in (3.7)—a method
related to the WKB approximation in quantum mechan-
ics. In the classical limit, the path integral is dominated
by the classical trajectory which is the minimal ex-
tremum of the action. One then expands about this tra-
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jectory, with Gaussian fluctuation coming first. From the
point of view of statistical mechanics, this classical path
is the Wulff shape—the minimal-free-energy shape as
determined by the Wulff construction [19].

For the Euclidean action S[x _] given by (3.8), the
classical trajectory x(t) for t €[0,L ] is given by

oS

8x_ X_=xg4

=0, (3.14)
satisfying boundary conditions x,(0)=x4(L)=x/V2,
from which it follows that

1
V2

as shown schematically in Fig. 4. The condition
x >hL?/4 is needed in order to keep xy(¢)>0 for all
t€[0,L]. This requirement, also given just after (3.13),
was also needed in the previous spectral approach [see
the Appendix, especially Eq. (A7)].

By setting x _ (¢)=x(#)+n(t), Eq. (3.7) now becomes

xy(t)= {ht(t—L)+x} , (3.15)

K_(x;L)=e “Ual n?z)l;):zo[dn]exp [—f(f%ﬁ 2dt] ,
(3.16)

where
S[xyl=hLx—Lh?L? (3.17)

and the measure is on the set of paths with n(¢) = —x 4(¢)
for t €[0,L]. The path integral over n has the action of
a free particle confined to a half line with a time-
dependent boundary point —x(¢). Thus far, Eq. (3.16)
follows exactly from (3.7)—the approximation starts in
the treatment of the functional integral over 1. Follow-
ing the usual saddle-point method, one relaxes the restric-
tion placed on the range of 7(t) by allowing 7 to take all
values in R for all t €(0,L ). This is certainly a good ap-
proximation for large values of x. Hence the path in-
tegral in (3.16) is approximately that of a free particle on
R so that

n(L)=0
d
fn(m:o [dn]exp

(3.18)

L., 1
— = |l ~—F— .
fomd} V2L

x/,/i' x/ V2

| |

t=0 —_—t t=L

FIG. 4. Schematic depiction of the classical path (Wulff
shape) x(¢) for the “relative” coordinate x _(z) of the type A
bubble. Note how it sags towards the base line due to the effect
of the bulk field.
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Putting (3.17) and (3.18) into (3.16) gives (3.13) as re-
quired.

Note that x (¢) is the Wulff shape for the relative coor-
dinate x _ () with a free energy given by S[x] in (3.17).
If the Wulff shape consisted of straight lines,
xy(t)=x/V'2 for all t €[0,L], then only the first term
on the right-hand side of (3.17) would be included. The
second term is a consequence of the tendency for the two
loops forming I'" to bend together due to the effect of the
field A, leading to a parabolic Wulff shape for the relative
coordinate (see Fig. 4).

IV. EVALUATION OF TYPE B BUBBLES

In order to evaluate Eq. (2.4) for type B bubbles, using
the functional integral approach as before, one now takes
the cylinder axis (x direction) as the Euclidean timelike
(¢) direction and allow the bubble sides to fluctuate in the
y direction with the SOS constraint applied to the x
direction (see Fig. 2). Hence, again using the nonrela-
tivistic approximation for the lengths of the “world lines”
forming I', we have
y1(x)=0,y,(x)=y,

uy(x|B)=U, [

$,(0)=0,,(0)=y, [dy1dy,]

Xexp(—S,[y1,y21)
4.1)

where y,(2) and y,(¢) are the y displacements of, respec-
tively, the lower and the upper sides of I" for 0=z <x.
The measure is on the set of all noncrossing paths lying
on the cylinder and having y,(¢)=y,(¢) for all tE€[0,x ]
with, as indicated, an initial and a final separation given
by yo. The value of y is determined by comparison to
the exact solution of the planar Ising model for A =0
[14-16,22]. So as to get the correct prefactors of the
two-point correlation functions, it is required that y,=1.
The fact that y,, is of order unity is physically reassuring.
The two-particle Euclidean action S,[y;,y,] is given by

Salyuyal=2x+ [ dt {1 +193+h 0=y

where, as usual, V; =dyj /dt.

The particles cannot pass through one another and are
confined to lie on a circle of circumference L so that the
system is periodic under the mapping

P: (y, )=y +L,y,+L).

(4.2)

(4.3)

As in the previous section, (4.1) is factorized by separat-
ing into center of mass and relative coordinates through
the transformation

P (==, 1) 4.4
For a given y,, y, is restricted, under the noncrossing
and geometrical constraints, to satisfy y,—L <y, <y,
and, in order that configurations are not repeated, y,
must lie in an interval of length L by, for example, having
y,€[0,L]. This gives a rather cumbersome
parallelogram-shaped domain of integration in the
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(¥1,y,) plane, although this can be translated in the (1,1)
direction under the periodicity mapping P. When rotat-
ing to the y, coordinates through (4.4), this periodicity
can be exploited so that the domain of integration in the
(y+,y-) plane becomes a simple rectangle having
0<y,<V2Land0<y_<L/ V2 with periodicity under
Y4y, +V2L. In other words, the center-of-mass
coordinate y, is that of a particle on a circle of cir-
cumference V2L and the relative coordinate y _ is for a
particle confined to a strip of width L /2. One should
note the role of periodicity in this coordinate decomposi-
tion, which would not have been possible for, say, two
particles on a strip of finite width but with free edges.

y_ 0=y, /V2

K,(x;L)=fL(o):yo/‘/3

with its measure being over the set of paths confined to
the strip0<y_(¢)<L /V2for tE[0,x].

A. Center-of-mass motion

The propagator K, (x;L) in (4.6) can be written in
spectral form

—_ — E+
K (xL)=3 lof (no/V2) e 4.8)
n
where @} (y, ) are the eigenstates satisfying
-1 en W )=ES @ () 4.9)
2 dya— n + n ¥n + .

with periodicity @, (y . +V2L)=¢, (y, ). Hence, after
normalizing with

V2L
I e voldy =1, (4.10)
we have
eX(y )=(V2L) " V2explio]y ), 4.11)
where o] =n7V2/L for n=0,+1,%£2,..., with
E,f =L, )% so that
=_1 s ,—nirx/L?
K, (x;L)=—F%— e X . (4.12)
* 2L nzz_w
\ \\
(NN (x,0)
AN
0,0 NS

FIG. 5. Depiction of a type B bubble winding around the
cylinder with a winding number of n =1 in the “center-of-mass”
coordinate.

[dy_ Jexp —foxdt(%}')?‘_ +v2hy_) L,
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Equation (4.1) can now be factorized, yielding

u,(x|B)=Use "2K , (x;L)K _(x;L) (4.5)

for which K, (x;L) is the propagator for the center-of-
mass motion
T )= *152

K (xL)=[, Ly Jexp = ["53ar ],

(4.6)

L=y (x)

where the measure is over the set of paths y, (¢) for
t€[0,x], on a cylinder of circumference V2L, and the
propagator for the relative-coordinate motion is

4.7)

Clearly, K , (x;L)~1/V2L as x — «. From the Poisson
summation formula, (4.12) can be rewritten as
1 § e —n?L?/x

V2mx -

n=-—oo

K, (x;L)= (4.13)

where the n =0 term, the only term surviving after the
limit L — o is taken, is the propagator for a free particle
on R. Contributions due to finite L (higher n terms) can
be interpreted as coming from bubbles that wind around
the cylinder—the » in (4.13) corresponds to the “winding
number” of the center of mass of the bubble. A bubble
with winding number n =1, for example, is shown in Fig.
5. A fuller discussion of the role of topology and univer-
sal covering space ideas to the finite-size structure of
correlation functions on cylinders was given in Ref. [22],
but only for the case of the pair-energy-density correla-
tion function when A =0. Here, where A is strictly
nonzero, the two sides of the bubble must wind around to-
gether as a pair.

- B. Relative-coordinate motion

As before, the propagator K _(x;L) in (4.7), being that
of a quantum-mechanical particle in a linear potential
confined to a strip of width L /V'2, can be written

K_(x;L)=3 lg; (yo/V2)% ™,

n=1

(4.14)

where now @, (y_) are eigenstates of the Schrodinger
equation

1 a?
2 dy%

+V2hy_ @ (y_)=E, @, (y_) (4.15)

with boundary conditions ¢, (0)=g, (L /V2)=0 (com-
ing from the noncrossing restriction) and with normaliza-
tion
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fOL/‘/zlcp;(y_)lzdyV: (4.16)

In presenting the results, we write E,” =FE, (h;L) in scal-

ing form
E; (h;L)=h*>*M,(h'3L) 4.17)
for n=1,2,..., where the scaling functions M,(z) are

roots of the quantization condition

Ai(—M,)Bi(z—M,)=Bi(—M,)Ai(z—M,)  (4.18)

with Bi(z) being the Airy function of the second kind in
standard notation [24]. We shall use the convention that
E{ <E; <Ej < --+. The eigenfunctions are given in
terms of z=h'*L by

(V2R 24Bi(z — M, (z))

O )T BRG — M () — B —M ()]
X {Ai(— M, (2))BI(V2h '3y _ —M,(2))
—Bi(—M,(z))Ai(V2h' Py _ —M,(2))} .

(4.19)

Putting (4.17)-(4.19) into (4.14) gives the full expres-
sion for K_(x;L). Notice, from (4.17), that now x is
scaled by h%/3 and L (and y,) is scaled by h!/3—the op-
posite of the type A case described in Sec. III A. This is,
of course, very natural since now, for type B, the inter-
faces run along the cylinder axis with & (h)~h ~>/> being
the length scale parallel to the interfaces (x direction) and
&,(h)~h 173 the length scale perpendicular to the inter-
faces (y direction).

Now, for type B bubbles, the correlation function has
the form

(x|B)=K ,(x;L)S p,(h;L)e ™", (4.20)
n=1
where p,(h;L)=Uyl@, (yo/V2)|*> and the “single-
particle masses” m, =m,(h;L ) are given by
m,(h;L)=2+h?*>M,(h'’L) . 4.21)
J
4~V 2UhBiXh'*L —M,(h'/?L))

p,(h;L)=

with the masses m,=m,(h;L) given in Eq. (4.21).
Hence, comparing (5.1) with the leading term in (5.2), &
is given by
hyL=m(hy;L)
=2+hr¥*M,(h’L), (5.4)

with u,(x

h>hy
Clearly, (5.4) implies that 2, =2 /L to leading order as

before, but the 2%/ term will give rise to corrections to

) given by (5.1) when h <hy and (5.2) when

Bi¥(h'*L —M,(h'*L))—Bi*(—M,(h'/3L))

It follows from (4.18) that (see asymptotic formulas in
Ref. [24])

exp(—4z3/2)
M,Z2)=—a,*—— (4.22)
2w[Ai'(a,)]
as z— oo, where Ai(a,)=0 with 0>a;>a,> - - as be-

fore and from (4.19)

(V2h')2Ai(V2h' Py _ +a, )
Ai'(a,)

hl/131Ln:l—+oo¢n b-)=

(4.23)

Hence, from (4.14), limth_’wK,(x;L) is identical to
Eq. (3.12) after respectively substituting y, and x for x
and L, which is, of course, as required.

The leading term in (4.22), substituted in (4.21), gives
the usual McCoy-Wu mass spectrum [11] m, =2—a,h?/?
for the infinite-size system. The scaling function
M, (h'/3L) describes how this mass spectrum is shifted
due to the effect of the finite-size geometry.

V. DETERMINATION OF THE CROSSOVER FIELD

We are now in a position to give a more detailed pre-
diction of the crossover field H, in terms of
hy=2mH /7*kyT than that obtained from the discus-
sion leading to Eq. (2.6). To do this, we need to look at
the large x behavior of u,(x).

From the results of Sec. III we have that

Ugexpl —(2L +hLx — 5h2L3)]

uy(x)=~ =3 (5.1)

as x — oo when only type A bubble contribute. On the
other hand, when only type B bubbles are included, then,
from the results of Sec. IV, as x — o

©

uy(x) z\/T 2

-_m_Xx

W(h;L)e ", (5.2)

where

(5.3)

-

[

this that are algebraic in L. Now, from Remarks (i) and
(i) in the Introduction, the crossover region around & y is
expected to have a width that is exponentially small in L.
It therefore makes sense to discuss algebraic shifts in the
position of A for large L. Thus, by applying (4.22) to
(5.4) and ignoring quantities exponentially small in L, we
have

hyL=~2—ah%? (5.5)

for large L. This can be solved explicitly to yield



51 FINITE-SIZE EFFECTS OF CORRELATION LENGTHS IN . . . 5269
1/
5 2l 21/301 Za? 2 a% a? 173 2(1? 172 % a? 173
7L 3L} L5 27L2 3L%2 54L* 27L%2 3L%  54L* ’
(5.6)
-

which incorporates the full algebraic dependence of 4
on L. By expanding (5.6) for large L we obtain leading
algebraic corrections to /. as

2 B 22/301 24/3‘1%
L L3 3L.7/3
Corrections to Eq. (2.6) [and therefore (1.7)] of the form

shown in (5.7) have not been anticipated by previous
transfer-matrix studies.

hy~ o (5.7)

VI. ZERO BULK FIELD

We now discuss the situation when A =0, where exact
Ising results are available. This will enable us to compare
the bubble model, evaluated at & =0, with the exact Ising
model, but also we shall consider how the results of the
previous sections in the limit of # —0" compare with the
bubble model evaluated at 4 =0.

Throughout this section, we consider only the pair-
energy-density correlation function whereas before, when
h0, we were able to discuss both the pair-energy-
density and the pair-spin-correlation functions within the
bubble model. The reason why we do not discuss pair-
spin-correlation functions using bubble-model ideas at
h =0 is as follows. Recall that at # =0 there is asymptot-
ic degeneracy in the eigenvalues of the transfer matrix as
L— o for T<T,. In particular, the two largest eigen-
values A, and A, coming from ‘“‘vacuum” states are
asymptotically degenerate, going like In(Ay/A;)~e L as
L — o leading to the expression shown in (1.4). Both
these eigenvalues contribute to the pair-spin-correlation
function, since the relevant matrix element is nonzero at
h =0, which then gives the leading behavior of the corre-
lation function as x — o with correlation length £~er.
This type of behavior, coming from the vacuum sector of
the transfer matrix, cannot be picked up by the bubble
model as applied in this paper, which was designed to de-
scribe the two-particle sector of the transfer matrix.
However, the situation is very different for the pair-
energy-density correlation function since for this case the
matrix element joining Ay and A, is zero at h =0 (see [6])
and indeed the complete expression for this correlation
function is obtained in its entirety from the two-particle
sector [22].

So far, we have argued that type A bubbles dominate
over those of type B when A is sufficiently small but
nonzero, i.e., 0<h <h,. However, in Sec. VI A, it will
be demonstrated that at 2 =0 type A bubbles become
highly subdominant and the pair-energy-density correla-
tion function is described by bubbles of type B. The
behavior of type B bubbles at 4 =0 compared to the case
when h—07, will be discussed in Sec. VIB. Here we
shall also compare results to that of a strip of finite width

at A =0 but with spins fixed to be up along both edges—
again exactly soluble for the Ising model.

A. Type A bubbles

For type A, K, (L) defined by (3.6) and given by (3.9)
is, of course, independent of # and we need only consider
K_(x;L) as defined by (3.7) with (3.8) for A =0. This
could be obtained by taking the 4 —0" limit of (3.12),
but it is just as simple to solve directly the time-
dependent Schrodinger equation (diffusion equation)
satisfied by the propagator K(x,x;t) describing the evo-
lution of a free particle with initial position at x, and
final position at x after time ¢ with the evolution confined
to the half line x 2 0. Thus we require the solution of

3 1 &

ot 2 a2 |KXx0st)=0
X

(6.1)

for x =20, with initial condition K(x,x4;0)=38(x —x)
and a Dirichlet boundary condition K (0,x,;#)=0 since
the particle cannot cross x =0. Hence, as seen from (3.7),
K _(x;L)is given by

K_(x;L)=K(x/V2,x/V2L). 6.2)

Equation (6.1) is simply the diffusion equation on a half
line with a Dirichlet boundary condition and can there-
fore easily be solved using the Fourier sine transform
with respect to the x variable from which it follows that

K(x,x0,0)= 2 [ “dke /¥ tsin(kx )sin(kaxo )
mvo

1 —(x—=xg)?/2t  —(x+xy)/2t
—{e —e
V2mt

and therefore

] (6.3)

1
V2wL
One can check, using asymptotic formulas for Airy func-
tions [24] and then replacing the sum in (3.12) by a
Riemann integral, that the limit of # —0" of (3.12) coin-
cides exactly with (6.4).

The first term on the right-hand side of (6.4) will
remain after the limit x — o is taken and is therefore
truncated away before contributing to u,(x). Hence type
A bubbles give a contribution to u,(x) going like
exp(—x2/L) at h =0 whereas type B gives contributions
of the form exp(—«x ) and are therefore highly dominant
over type A contributions.

(l—e_"Z/L) .

K_(x;L)= (6.4)
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B. Type B bubbles

Now that it has been ascertained that only type B bub-
bles need be considered in the calculation of the pair-
energy-density correlation function at A=0, we can
proceed to evaluate them. Before doing so, it should be
stressed that, due to additional symmetry at A =0 not
present when h >0, we need to treat h =0, hereafter
denoted as case (i), and the limit of # —07" of the type B
calculation of Sec. IV, denoted case (ii), as distinct cases.

For convenience, we present the results in this section
directly in terms of two-particle wave functions without
going to center-of-mass and relative coordinates. As pre-
viously stated, the results will only apply to the pair-
energy-density correlation function where U,=47%
Equations (4.1) and (4.2) can be expressed in spectral
form as

—E_ (2)x

uy(x;h|B)=47% "3 |¢,(0,y,)|% , (6.5)

where the eigenstates are labeled by pairs of integers
n=(n,n,) and the two-particle eigenfunctions ¢,(y,,y,)
and eigenvalues E (2) are given by the Schrodinger equa-
tion

_1
2
=E. (), (y,¥,) . (6.6)

When either n=0 or h—0", Eq. (6.6) will have
scattering-state solutions of Bethe ansatz type. In addi-
tion, the noncrossing constraint on the particle world
lines simply that ¢,(y,y)=0 for all y so that ¥,(y,y,)
can be expressed as a Slater determinant

2 2
& &

+h(y,—y;)

Yn(¥1,3,)

@n, 1) @u (¥2)

Vo)== , 6.7
V)= e, 00 @, 0) 7
where @, (y) are single-particle wave functions
1 io;y
<p,,j(y) Ve (6.8)

for j=1,2, normalized on a cylinder of period L. The
wave numbers o;=w;(n;) are quantized in terms of the

i Y
integers n;. Clearly, the two-particle eigenvalues are
given by

E,(2)=Hoi+tw3) . (6.9)

i

Additional symmetries are required to determine the
quantization conditions on the wave numbers »; and
these will differ for the two cases, which we now treat in
turn.

Case (i): h=0. For this case, the two particles, mov-
ing on the cylinder, are effectively indistinguishable. This

means that the system is invariant under the mapping

Q: (y,¥2)—(yy,y,+L) (6.10)

rather than just being periodic under mapping P of (4.3),
although note that Q2?=P. Hence, imposing

Yoy 1, ¥2)=¢,(y,,¥, +L), for all y, and y,, on (6.7) and
(6.8) implies that cojEQ}f for both j=1,2 where here,
and in what follows below, we define

Qf={wER: “t=7F1}, (6.11)

which is consistent with the notation for even (2} ) and
odd (Q; ) parity states in the corresponding planar Ising
model. Indeed, note that

Yo(y1,92) =11, (y,,y; +L)=both 0,0, EQ} . (6.12)

So for case (i), just as in the exact Ising model [22], only
states in QZ contribute to the pair-energy-density corre-
lation function. Putting all this together, we can express
the pair-energy-density correlation function u,(x|8) in
terms of “‘single-particle contractions,” defined by

Tf(x,y)=% > e~x(1+w2/2)eiym (6.13)

wef
such that for case (i)
uy(x;h=0|B)=[T/ (x,00 = T; (x,y,) T (x,—y,) -
(6.14)

Equation (6.14) has been presented in a short Letter else-
where [22] (but without the detailed derivation given
here) and, for large values of x and L with x >>L (where
the nonrelativistic approximation works best), is known to
give a reasonable approximation to the exact Ising result
[22]. Note, in particular, that at # =0 successive eigen-
values are separated by an amount of the order of 1/L2.

Case (ii): h—0". Whenever a nonzero field is present,
any symmetry transformation of the particles has to
preserve y, —y;. This will, of course, exclude the map-
ping Q. In fact, the appropriate periodicity mapping for
this case is P [given by (4.3)], as already used throughout
Sec. IV. Thus one would rnot expect the A —07 limit of
the results of Sec. IV to coincide with the 4 =0 result of
case (i) above because the wave numbers w; will be quan-
tized by a different rule. To be more concrete, applying
the periodicity P to the wave function given by (6.7) and
(6.8), i.e., ¥, (y,¥,)=v¢,(y; +L,y,+L), implies that ei-
ther both @,,0,EQ} or both w;,0,EQ;. Hence, put-
ting this into Egs. (6.5) and (6.7)-(6.9) gives

lim u,(x;h|B)
h—0"

=1 3 ([TEx,00P—Tf(x,99)TE(x, —po)}

e==+

(6.15)

for case (ii), where the prefactor of 1 is needed to prevent
double counting of states. As expected, Eq. (6.15) is ex-
actly reproduced by taking the # —07 limit of the results
of Sec. IV, namely, (4.20), where K | (x;L) is, of course,
independent of 4 so that one merely has to apply this lim-
it to m,(h;L) and p,(h;L)=47%|p, (yo/V'2)|%. Using
asymptotic formulas for the modulus-and-phase represen-
tation of the Airy functions [24] appearing in (4.18) and
(4.19), one finds that

M, (z)=n’7?/z? (6.16)
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as z—0 while
172

2V2

17 (6.17)

hl—l>r<r)l+¢n )=
where @, =n7V'2/L and, in both (6.16) and (6.17),
n=1,2,3,... . Putting all this into (4.20) gives precisely
(6.15), after transforming the summation variables to
0=, —,,)/V?2 and 0,=(0, +o,,)/V2 where it is
recalled that w,‘f , defined just after (4.11), is the summa-
tion variable for K | (x;L).

The discrepancy between 2 =0 and & —07 does not, of
course, necessarily mean that the energy-density-
correlation function itself has a jump discontinuity in A at
h =0 for finite L. In any case, when A >0, type A bub-
bles dominate for 0<h <h, and thus will always dom-
inate for small enough nonzero h. Hence u,(x;h|A)
rather than u,(x;h |B) will describe u,(x) for very small
positive h except when h, —0 in addition to h—0"
while keeping h>h,. Having hy—0 means that
L — o and we know that u,(x;4) is continuous in 4 in
the limit L — o or, more specifically, u,(x;k|B), as
given by (4.20), in the limit #'*L — «. Furthermore,
one can see by taking the limit of L — o on expressions
(6.14) and (6.15) that the discrepancy between
u,(x;h=0|8B) and Iimh_’0+u2(x;h |B) vanishes in the
bulk since lim; T (x,y)=lim; T, (x,y).

Further insight into this discrepancy can be gained by
expressing T (x,y) in terms of windings of particle paths
around the cylinder as was similarly done in Sec. IVA
and Ref. [22]. Using the Poisson summation formula,
Eq. (6.13) can be rewritten as

sinlw, y_) ,

Tf(x,y)=7'

172 »
2 e % E (:Fl)ne—(y+nL)2/2x
X ’

(6.18)

where the summation index n refers to the winding num-
ber of the particle paths as they encircle the cylinder (i.e.,
homotopy class). Substituting T;" (x,y), given by (6.18),
into (6.14) one sees that, for case (i), the first finite-size
correction to the bulk L — oo limit of u,(x|B) comes
from one side of the bubble winding around once (wind-
ing number n=1) while the other does not wind at all
(winding number n=0), as illustrated in Fig. 6. Note
that domain-wall configurations of the type shown in Fig.
6 divide the cylinder into just two regions of opposite

FIG. 6. Depiction of a bubble configuration (type B) occur-
ring at A =0 only, where one side winds around once while the
other does not wind at all. Note that it divides the cylinder into
just fwo domains, not three as in Fig. 5.
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magnetization—a situation not allowed when 4 is
nonzero. For case (i), one sees that when substituting
TLi(x,y ), given by (6.18), into (6.15), the terms corre-
sponding to the configuration in Fig. 6 for e= +cancel
with those for e=— due to the (F1)" term in (6.18).
Hence, as required for nonzero h, configurations of this
type do not occur for case (ii) and the first finite-size
correction to the bulk form of u,(x|8B) comes from wind-
ing configurations of the type shown in Fig. 5, where both
sides of the bubble wind around once.

So, to conclude, it should be emphasized that to deter-
mine the behavior of u,(x) at 2 =0, one sums over bub-
bles of type B but, due to the higher symmetry, the pro-
cedure set out under case (i) must be followed, which is
quite different from taking the limit of # —0% of the re-
sults of Sec. 1V, i.e., case (ii).

As a further illustration of the importance of boundary
conditions on the spectral form of correlation functions,
we consider u,(x) at A =0 for another geometry. Instead
of a cylinder of period L, we now take a strip of infinite
length but with a finite width L. The Ising lattice is
confined between the two edges y ==L /2 along which
the Ising spins are forced to be up. The exact Ising
analysis for this case was carried out by Abraham and
Martin-Lof [25]. The corresponding bubble model for
this consists of the bubble as before but with sides
confined to lie within |y| <L /2 rather than lying on the
cylinder. Hence u,(x) is given by Eq. (6.5) with the
eigenstates given by Eq. (6.6) for 2 =0, but now |y| <L /2
and the boundary conditions are ¢,(—L/2,y,)
=y,(y1,L /2)=0, i.e., that of two noncrossing particles
in an infinite square well. The eigenfunctions are still
written in Slater form (6.7) with the same eigenvalues
E_(2) as in (6.9) but with different (p,,j(y) for j=1,2 given
by
172

sin[w;(y +L /2)]

7 (6.19)

®n,(¥)=

being normalized single-particle wave functions on a strip
of width L having <p,,j(i-L /2)=0. Thus the wave num-

bers w; =w;(n;) are quantized through

o;=n;w/L, n;=12,3,... (6.20)

J

for j=1,2. Note that this quantization of w; is distinct
from the above cylinder results for both case (i) and case
(i)). In the exact Ising model, the wave-number spectrum
is quantized according to a more complicated rule [25]
(involving Onsager’s hyperbolic triangle [7]), which limits
to that given by (6.20) for large L (and sufficiently small
n; so that ; stays small). Hence, as in the cylinder result
at h =0, substituting (6.19), with (6.20), into Egs. (6.5)
and (6.7) gives a u,(x) that compares well with the exact

Ising model for large x and L with x >>L.

VII. CONCLUSION

In this paper we have demonstrated the extent to
which the structure of the two-point function for a sub-
critical Ising model [or a model with a similar O(1) sym-
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metry], with a bulk symmetry-breaking field H on a lat-
tice wrapped on a cylinder of finite circumference M, can
be understood in terms of a simple coarse-grained
description taking into account important domain-wall
fluctuations only, namely, the bubble model.

This approach gives rise to a correlation function
whose field and finite-size dependence is consistent with
earlier studies, particularly those based on an analysis of
the transfer-matrix spectrum [1-5]. The important
crossover behavior in the mass gap of this spectrum at
H=H,, coming from an avoided-level-crossing effect, is
recaptured within the bubble phenomenology, coming
from a radical change in the form of the dominant bub-
bles contributing to the correlation function. According
to the bubble model, the correlation function itself takes
a significantly different functional form at each side of
H . Previous transfer-matrix work [1,4,5] suggests that
the crossover field Hy depends on M like H, <1/M.
The bubble model confirms this to leading order for large
M but adds algebraic corrections to this, the first one go-
ing like 1/M°/3. The bubble model can be formulated us-
ing scale-free variables, which is particularly useful in the
critical region. Thus, near the critical point, the equation
H, =H,(M,T) can be expressed in a scaled homogene-
ous form. Applying the bubble model at H=0 gives re-
sults that compare very well with exact analysis of the Is-
ing model.
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APPENDIX: ASYMPTOTIC FORM OF K _(x;L)
(TYPE A)

Here we give details of the asymptotic calculation car-
ried out in Sec. IIT A, namely, how the asymptotic ex-
pression of K _(x;L) (type A) for large h'/3x, given by
(3.13), follows from the spectral series in Eq. (3.12). We
use Laplace’s method applied to the sum in (3.12), which
starts from the assertion that for large k1 !/3x, the sum is
dominated by terms peaked around the maximum one.
Since a, — — o« as n— o0, Ai%(h!3x +a, ) will eventual-
ly peak at a large value of n corresponding to a negative
value of h!3x +a, no matter how large (and positive)
h'”3x is. However, the factor exp(h?/3La, ) in the sum-
mand will serve to suppress the large n terms provided
h2/3L is sufficiently large. Thus we assume by ansatz that
as h'3x — o and h*”L— «, the maximum term will
occur at an n that is large but still keeps & '/*x +a, large
and positive. Hence we substitute the standard asymptot-
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ic expressions [24]

exp[ —3(h 173x +a, 33721

: 1/3 ~

Ailh "x +a,)= 2 2h B +a ) A (A1)
a,~—3mn/2)**, (A2)
[Ai'(a,) P=7"Y(3mn /2)1/3 (A3)

into the sum (3.12) and then approximate it by a
Riemann integral (for large x) taking u =3mn /2x as the
integration variable. By changing the integration vari-
able to v =u 2" we find that as h%/x gets large,

) V2Uhx)'? e expl —x27®()]
K_(x;L)= 47 fo dv T (A4)
where

D(v)=4x'3[(hx)"*—v *2+h* Ly . (A5)

Laplace’s method is now applied to (A4), where, as
x — o, the integral is dominated by the region around
Vg, the minimum of ®(v). Thus ®'(v,)=0 implies that

2
l_hi

UOZ(hx )1/3 -

(A6)

Note that the integrand in (A4) has a branch point at
v=(hx)!/3. However, in order to be consistent with the
above ansatz that the argument of Ai(h!”*x+a,) be
large and positive at the maximum of the summand, it is
required that v, < (hx)!/3 [as is satisfied by (A6)] and that
h*/3L be large (as anticipated). We also require that v,
lie within the range of integration, i.e., v, >0, which im-
plies that we must have
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